DRESSING OF GRINDING WHEELS
The “classic” method for dressing grinding wheels in all areas of mass production utilizes a single axis plunge roller which incorporates the workpiece geometry. The short dressing times due to radial infeed of the profile roller into the grinding wheel help to achieve a fast and reproducible workpiece output. All conventional and in some special applications, super-abrasive wheels are dressed. In some applications where it is difficult to maintain the correct profile or desired wheel face condition, a continuous dress strategy “CD” may be used.

THE “CLASSIC” PROCESS

The “classic” method is used in many applications:

- Threads
- Turbine blades
- Bearing journals
- Bearing races
- Twist-free surfaces
- Engine valves
- Fuel injector components
- Shearing blades
- Gears
- Engine components
- Transmission components
-...

THE DESIGN VARIANTS

DR. KAISER has mastered various manufacturing techniques throughout the years in order to meet the diverse accuracy and process requirements of their customers. The sintered profile roller (R) is preferably supplied in a hand-set diamond design. Additional CVD diamond edge reinforcement is used in high wear areas to ensure maximum service life. Due to the production-related shrinkage of the sintered bond, the diamond surface is ground in most cases to meet the geometric accuracy requirements. Difficult profiles and requirements for the highest accuracies can be produced by using a reverse plated profile roller (PG) manufactured using the reverse galvanic process. This process provides a randomly distributed diamond surface and can also utilize CVD reinforcing diamond to increase the service life. Electroplated profile rollers (RG) are well suited for pre-profiling and prototyping applications but not generally used for high precision applications.

OUR MANUFACTURING PROGRAM

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Manufacturing process / Bonding</th>
<th>Diamond type used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile Roller</td>
<td>R</td>
<td>Reverse sintered / tungsten bond</td>
<td>H - Hand-set</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G - Randomly distributed</td>
</tr>
<tr>
<td>Profile Roller</td>
<td>PG</td>
<td>Reverse plated / nickel bond</td>
<td>H - Hand-set</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G - Randomly distributed</td>
</tr>
<tr>
<td>Profile Roller</td>
<td>RG</td>
<td>Electroplated / nickel bond</td>
<td>G - Randomly distributed</td>
</tr>
</tbody>
</table>

Legend:
- H - Hand-set
- G - Randomly distributed
- K - Reinforced
- C - CVD diamond
DIAMOND SELECTION CRITERIA

In addition to dressing parameters such as radial infeed, radial infeed speed and dressing speed ratio, the process can be influenced by diamond size, diamond type, diamond setting pattern, grinding technique and the manufacturing process. DR. KAISER’s many years of experience insure that the design of the dressing tool will be optimal for the intended application. A targeted reduction of wear is made possible by reinforcing high wear areas with specially selected diamonds or our CVD diamond edge reinforcement.

G - Scattered diamond coating

HK - Hand-set diamond setting with diamond edge reinforcement

GC - Scattered diamond coating with CVD-diamond edge reinforcement

HC - Hand-set diamond setting with CVD-diamond edge reinforcement

SOME IMPORTANT FORMS

The illustrations show examples of some frequently used shapes and their shape key designation. A wide variety of other shapes are also possible.

Profile Rollers

Profile Roller Sets

R30 R41 R60 R150 R32 R160 PG170 PG200 R201 R110
THE INDIVIDUAL PROCESS

CNC controlled diamond dressing discs are used in all areas of grinding technology, especially for small and medium sized serial production and for prototype applications. Changes to the desired grinding wheel profiles can be easily implemented by using the machine CNC control. This keeps the workpiece related dressing costs low.

DESIGN VARIANTS

All types of abrasives can be dressed. For conventional grinding wheels, sintered dressing discs (NC) utilizing natural and CVD diamond designs are used. Point crush dressing discs (NCC) utilize CVD diamond set in a very tight pattern to meet the requirements of super-abrasive grinding wheels. Electroplated dressing discs (NCG) are used for special applications, especially for pre-profiling.

Self-sharpening dressing discs (RI, RIG, RIK) are available in various designs for dressing less complex profiles into superabrasive grinding wheels.

VARIATIONS

Stable form

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Manufacturing process / Bonding</th>
<th>Diamond type used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dressing Disc</td>
<td>NC</td>
<td>Reverse sintered / tungsten bond</td>
<td>H - Hand-set</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G - Randomly distributed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C - CVD diamond</td>
</tr>
<tr>
<td>Point Crush Dressing Disc</td>
<td>NCC</td>
<td>Reverse sintered / tungsten bond</td>
<td>H - Hand-set</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G - Randomly distributed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C - CVD diamond</td>
</tr>
<tr>
<td>Dressing Disc</td>
<td>NCG</td>
<td>Electroplated / nickel bond</td>
<td>G - Randomly distributed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C - CVD diamond</td>
</tr>
</tbody>
</table>

Self-sharpening

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Manufacturing process / Bonding</th>
<th>Diamond type used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dressing Disc</td>
<td>RI</td>
<td>Impregnated / tungsten bond</td>
<td>H - Hand-set</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G - Randomly distributed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C - CVD diamond</td>
</tr>
<tr>
<td>Dressing Disc</td>
<td>RIG</td>
<td>Electroplated / nickel bond</td>
<td>G - Randomly distributed</td>
</tr>
<tr>
<td>Dressing Disc</td>
<td>RIK</td>
<td>Impregnated / vitrified bond</td>
<td>G - Randomly distributed</td>
</tr>
</tbody>
</table>
DIAMOND SELECTION CRITERIA

In addition to dressing parameters such as dressing infeed or dressing speed ratio, the process can be specifically influenced by the choice of the manufacturing process, the diamond coating (grit size, setting pattern, diamond type) and the profile shape (geometry). Increasingly, the demand for small included angles and tip radii (a few 1/100 mm) can only be achieved by using CVD diamond.

RE-LAPPING

The use of CVD diamond provides diamond dressing discs with the ability to be re-lapped many times, thus significantly reducing their total cost. Due to the geometrically defined shape of the CVD diamond material, the dressing behavior remains very consistent even after many re-lapping operations.

IMPORTANT STANDARDS

The illustrations show examples of standard shapes. A wide variety of other geometric shapes is also possible.
Stationary dressing tools are utilized on all types of grinding machines and, of course, do not require the use of a dressing spindle mechanism. This makes them a cost effective alternative to diamond dressing discs. They are suitable for many applications whether it be for internal grinding utilizing small wheels or for external cylindrical grinding of crankshafts or camshafts. They can be used for simple straight dressing applications or, for complex, CNC controlled profile dressing. The consistent quality and variety of available shapes of synthetic MCD and CVD diamond materials, opens up a wide range of possibilities in tool technology with excellent tool life. Due to the geometrically defined shapes available with CVD and MCD form plates, our tools can be re-lapped many times to enable precise profile dressing over a longer period of time.

Stable Form

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Manufacturing process / Bonding</th>
<th>Diamond type used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer Diameter Dresser</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Profile Dresser</td>
<td>AF</td>
<td>Tungsten or carbide bond</td>
<td>C - CVD diamond</td>
</tr>
<tr>
<td>• Shoulder Dresser</td>
<td>AFP</td>
<td></td>
<td>M - MCD</td>
</tr>
<tr>
<td>• Radius Dresser</td>
<td>AFS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Radius Dresser</td>
<td>AFR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-Point Dresser</td>
<td>EA</td>
<td>Tungsten or carbide bond</td>
<td>C - CVD diamond</td>
</tr>
<tr>
<td>Triangle Dresser</td>
<td>Z</td>
<td>Carbide diamond composite</td>
<td>C - CVD diamond</td>
</tr>
<tr>
<td>Needle Dresser</td>
<td>NF</td>
<td>Tungsten or carbide bond</td>
<td>H - Hand-set</td>
</tr>
<tr>
<td>Multi-Point Dresser</td>
<td>KF</td>
<td>Tungsten or carbide bond</td>
<td>G - Randomly distributed</td>
</tr>
<tr>
<td>Multi-Point Cartridge</td>
<td>VP</td>
<td>Tungsten or carbide bond</td>
<td>G - Randomly distributed</td>
</tr>
<tr>
<td>Indexable Dresser</td>
<td>AR</td>
<td>Tungsten or carbide bond</td>
<td>C - CVD diamond</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M - MCD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H - Hand-set</td>
</tr>
</tbody>
</table>

Self-Sharpening

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Manufacturing process / Bonding</th>
<th>Diamond type used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needle Dresser</td>
<td>NF</td>
<td>Tungsten or carbide bond</td>
<td>H - Hand-set</td>
</tr>
<tr>
<td>Multi-Point Dresser</td>
<td>KF</td>
<td>Tungsten or carbide bond</td>
<td>G - Randomly distributed</td>
</tr>
<tr>
<td>Multi-Point Cartridge</td>
<td>VP</td>
<td>Tungsten or carbide bond</td>
<td>G - Randomly distributed</td>
</tr>
</tbody>
</table>

Wearable

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Manufacturing process / Bonding</th>
<th>Diamond type used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indexable Dresser</td>
<td>AR</td>
<td>Tungsten or carbide bond</td>
<td>C - CVD diamond</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M - MCD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H - Hand-set</td>
</tr>
</tbody>
</table>
PROFILE DRESSER

Special profiles can be “lapped” into our dressers for use on “angle-head” grinding applications. This allows for an optimal dresser design. Please ask our experts.

INTERNALLY COOLED

The direct supply of coolant to the dressing zone optimally dissipates the process heat generated and protects the diamonds from overheating. The system is also suitable for complex profiles and unfavorable mounting situations.

RADIUS DRESSER

The radius dresser is available in various configurations with a uniform diamond volume. For special applications, the use of smaller or larger CVD diamond material is possible. MCD is particularly suitable for hard and very abrasive grinding wheels. The effective hardness can be influenced by the setting pattern/style.

TRIANGULAR PLATES

Triangular plates utilizing CVD or PCD diamond with or without a mounting pin are available. They can be clamped into a cylindrical or conical tool holder. The clamping system can be designed according to your requirements.

VARIATIONS (EXAMPLES)

- Outside-Ø AF1
- Radius AF3
- Shoulder AF5
- One-Stick AF21
- Radius-Dresser AF84
- Natural diamond NF/KF
- Indexable dresser AR

![Variations Examples](image)
Vitrified CBN and Diamond grinding wheels are the most effective “dressable” products for production grinding applications. The extreme hardness of these abrasives can prove to be a challenge for diamond dressing tools. Self sharpening dressing tools with a diamond section made of diamond mesh and a powdered metal bond system are particularly suited to this difficult application. These tools provide a long service life and very consistent dressing behavior. The onset of wear during the dressing process constantly produces new diamond cutting edges, which not only enables the dressing of extremely hard grinding wheels, but also makes the grinding process effective and very economical. Both simple and complex dressing and grinding operations can be performed with optimally designed dressing/grinding wheel systems.

For very high accuracy requirements, tools which utilize mesh diamond and a powdered metal bond system can also be provided with additional edge reinforcement made of CVD diamond. In some cases, “NC” type dressers utilizing CVD diamond can also be used.

SELF-SHARPENING

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Manufacturing process / Bonding</th>
<th>Diamond type used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dressing Disc RI</td>
<td>RI</td>
<td>Infiltrated / tungsten bond</td>
<td>G - Randomly distributed</td>
</tr>
<tr>
<td>Dressing Disc RIK</td>
<td>RIK</td>
<td>Infiltrated / vitrified bond</td>
<td>G - Randomly distributed</td>
</tr>
<tr>
<td>Dressing Disc RIG</td>
<td>RIG</td>
<td>Electroplated single layer / nickel bond</td>
<td>G - Randomly distributed</td>
</tr>
</tbody>
</table>

STABLE FORM

| Point-Crush Dressing Disc | NCC | Reverse sintered / tungsten bond | G - Randomly distributed |

C - CVD diamond
INfiltrated OR Single-Layer
Sintered tools with an impregnated diamond section (RI) can be “fine tuned” to a specific dressing application by adjusting the diamond specification, grain concentration, coating width, bond properties and porosity. Impregnated diamond sections are very stable and can be manufactured with a minimum width of 0.6 mm without “supporting” the diamond section with a steel rib. This also makes profile dressing possible.

Electroplated, single-layer tools (RIG) in a hard nickel bond are very durable and efficient. The dressing behavior can be adapted to the process by introducing different diamond types and sizes and controlling the plating depth. The supporting body, which can be made of steel or brass, must have the ability to be “ground away” during the dressing process.

SUSTAINABLE WITH FAST CHANGEOVER
With the sustainable ECO clamping system, a worn RI diamond section can be replaced in a 72 hour “exchange” service. This reduces tooling and stocking costs.

A clever system with many advantages!

STANDARD TOOLS
Pictured below are typical dresser configurations. Custom designs are also available.

Electroplated and impregnated with CVD diamond reinforcement

SUSTAINABLE FOR EXTRA DURABILITY
The combination of an impregnated diamond section along with CVD diamond rods (RI-Ge) opens up new possibilities for dressing. The wear of the dresser is limited by the CVD edge reinforcement, but without impairing the dressing ability of the tool. As these tools have very good edge stability, they allow the production of fine and highly accurate profiles.

Impregnated tools with vitrified bond (RIK) are particularly suitable for soft dressing of very small grinding wheels and fine or delicate grinding wheel profiles.

SUSTAINABLE CLAMPING SYSTEM

DR. KAISER
präzision durch diamant
Since gear grinding is usually one of the last processes in gear production, rotary diamond dressers have to combine long life along with the ability to provide the correct wheel profile to produce accurate tooth geometries and the best quality of surface finish. DR. KAISER has introduced a number of diamond dresser innovations such as CVD edge reinforcement to meet the steadily increasing demands on the dressing tool.

The diamond dressing disc is the most important tool in single tooth profile grinding. The dresser must have high form stability in the radius section of the dresser and produce an aggressive dressing performance, therefore natural diamond construction is substituted more frequently by CVD diamond technique. The latest developments in CVD diamond production have produced diamonds with high hardness which can be geometrically shaped by laser cutting. Besides a consistent and aggressive dressing action, these tools can be re-lapped several times which reduces dressing costs versus natural diamond dressers.

Important Standards

Single tooth gear grinding

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Manufacturing process / Bonding</th>
<th>Diamond type used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dressing Disc</td>
<td>NC</td>
<td>Reverse sintered / tungsten bond</td>
<td>H - Hand-set</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G - Randomly distributed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C - CVD diamond</td>
</tr>
<tr>
<td>Point Crush Dressing Disc</td>
<td>NCC</td>
<td>Reverse sintered / tungsten bond</td>
<td>H - Hand-set</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G - Randomly distributed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C - CVD diamond</td>
</tr>
<tr>
<td>Dressing Disc</td>
<td>NCG</td>
<td>Electroplated / nickel bond</td>
<td>G - Randomly distributed</td>
</tr>
</tbody>
</table>

Diamond dressing discs for gear grinding
RE-LAPPING
The CVD diamond coating enables the dressers to be re-lapped many times and thus significantly reduces the total costs of the tools. Due to the geometrically defined shape of the CVD diamond form plates, the dressing behavior remains almost constant even after re-lapping many times.

Flexible CNC dressing can be used for dressing worm wheels for small lot or prototype production. We use CVD diamond in order to produce dressing tools with the required radius to form even the smallest modules in worm wheels with the highest accuracy.

THE BOW IS IMPORTANT
Bevel gear grinding requires a rotary dresser capable of dressing a grinding wheel in both perpendicular and parallel axes. Diamond dressers with CVD diamond are replacing natural diamond dressers as the most cost-effective dressing solution. CVD diamond dressers can be re-lapped multiple times and give a better and more consistent part finish.
GEAR MANUFACTURING

SMALL GEARS
The generating method of gear grinding is one of the most efficient processes for long-run production. Electroplated gear tools with long tool life are used for this process because of their aggressive dressing behavior. Innovative and continuous development of gear dresser manufacturing processes guarantees to deliver process optimized dressing solutions for all machine systems. DR. KAISER delivers these gear dresser solutions to customers all over the world.

CV D DIAMOND PROTECTION – THE ONLY WAY TO PROTECT THE OD
DR. KAISER introduced CVD diamond edge reinforcement in the field of electroplated dressing tools in the 1990’s and has continuously developed it further. The outer diameter of the tapered tools is thus reliably protected against erosion wear, resulting in longer service lives. The electroplated positive dressing tools (RGF, RGM) can be re-lapped according to your requirements and replated several times. The edge reinforcement by CVD diamonds can also be applied to the reverse plated multi-rib tool systems (PGM). For small modules, sintered dressing discs (RF) in CVD diamond design can be used.

PROFILE ROLLERS FOR GENERATING GEAR GRINDING

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Manufacturing process / Bonding</th>
<th>Diamond type used</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dressing Disc or Set of Dressing Discs</td>
<td>RGF</td>
<td>Electroplated single layer / nickel bond</td>
<td>G - Randomly distributed</td>
<td>C - CVD diamond</td>
</tr>
<tr>
<td>Dressing Roller Assembly</td>
<td>RGM</td>
<td>Electroplated single layer / nickel bond</td>
<td>G - Randomly distributed</td>
<td>C - CVD diamond</td>
</tr>
<tr>
<td>Multi-rib Roller</td>
<td>PGM</td>
<td>Reverse plated / nickel bond</td>
<td>G - Randomly distributed</td>
<td>C - CVD diamond</td>
</tr>
<tr>
<td>Dressing Disc or Set of Dressing Discs</td>
<td>RF</td>
<td>Reverse sintered / tungsten bond</td>
<td>H - Hand-set</td>
<td></td>
</tr>
<tr>
<td>Profile Roller</td>
<td>RG</td>
<td>Electroplated single layer / nickel bond</td>
<td>G - Randomly distributed</td>
<td>C - CVD diamond</td>
</tr>
</tbody>
</table>

Description Type Manufacturing process / Bonding Diamond type used Remark
Dressing Disc or Set of Dressing Discs RGF Electroplated single layer / nickel bond G - Randomly distributed C - CVD diamond For one-start dressing and different modules
Dressing Roller Assembly RGM Electroplated single layer / nickel bond G - Randomly distributed C - CVD diamond For one-start dressing with fixed modules
Multi-rib Roller PGM Reverse plated / nickel bond G - Randomly distributed C - CVD diamond For multi-start dressing
Dressing Disc or Set of Dressing Discs RF Reverse sintered / tungsten bond H - Hand-set G - Randomly distributed C - CVD diamond In special cases
Profile Roller RG Electroplated single layer / nickel bond G - Randomly distributed C - CVD diamond Double cone version for pre-profiling
PROFILE ACCURACY IS THE KEY

The tooth flank profile is transferred to the grinding worm by the dressing process. Crowning and tip and root relief of the gears are therefore connected to the dressing tool. The calculation must be carried out by a mathematical rolling simulation before the tools are manufactured.

For profile roller sets, the design in the tooth root area must be taken into consideration. It depends upon whether you want to realize a “hobbed” protuberance, a defined tooth root transition radius or a defined ground tooth root. Header and root relief can be produced as straight lines and also as tangential transitions or even multi-step to crowning. In the case of helical gears, entanglement effects affect the profile shape of the dresser and are taken into account accordingly in the design.

The gear specialists at DR. KAISER calculate the geometry for your dressing tools according to your gear drawing specifications using their own simulation software.

DRESSING TOOLS FOR GEAR ROOTS

CVD diamond head dressing plates, dressing strips or tip radius rollers are used to create a defined tip radius on the grinding worm. Our gear wheel experts take over the design of the radius and angle geometry for your special application.

IMPORTANT STANDARDS
FROM THE WORKPIECE DRAWING TO THE DRESSING TOOL

Each machine has its own special feature - each customer has his own wealth of experience - each dressing tool has its own special task. For a process-optimized design of a dressing tool by DR. KAISER, many basic conditions are important, which you should discuss in advance with our technical sales department and design engineers:

- Workpiece drawing with general information on the workpiece (material, hardness, ...),
- Details of the grinding area with the necessary tolerances,
- The grinding tool used, cooling lubricant conditions and other important data are entered in a design data sheet.
- A sketch of the grinding and dressing situation is very helpful for an optimum design of the dressing process.
- For all new projects you will receive an approval drawing from our designers on the basis of this data
- Only then will the production of your dressing tool begin.

WORKPIECE DRAWING

GRINDING AREAS

FURTHER INFORMATION

STATIONARY DRESSER

DRESSING DISC

PROFILE ROLLER

Dressing spindle at the rear and parallel to the grinding wheel

Mounting hole connection

Dressing spindle attached to the tailstock with a fixed angle of attack of 3°

Workpiece

Dresser on the workpiece spindle with 45° inclined holder

Workpiece

30°

25mm

ø400 mm

30°

25mm

ø400 mm

3°

25mm

Mounting hole connection

ø52H3 (hydraulic expansion)

C72FA 3° inclined
The multitude of precision applications of customers and machine manufacturers requires a large number of variations of dressing tools. In the 1980’s, Dr. Michael Kaiser introduced a classification system for dressing tools for standardization purposes, which is constantly being further developed: the “form key”. This makes it possible to describe the essential geometric elements of a tool even without a drawing.

A system that has proven to be very successful. For use, it is of course necessary to know the classified form of the tool according to the DR. KAISER standard - but after a short time, every tool with its essential geometric elements and its diamond coating can be described with a “speaking” key.

Examples for different product groups

<table>
<thead>
<tr>
<th>Dressing Disc</th>
<th>Dressing Disc for CBN</th>
<th>Profile Roller</th>
<th>Stationary Dresser</th>
<th>Dressing Tools for Gear Grinding</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR. KAISER - Type and shape</td>
</tr>
<tr>
<td>NC20</td>
<td>NC88</td>
<td>RIG40</td>
<td>RIG90</td>
<td>R222</td>
</tr>
<tr>
<td>C</td>
<td>CG</td>
<td>G</td>
<td>G</td>
<td>GK</td>
</tr>
<tr>
<td>150-R0,5-W30</td>
<td>130-10-1,5-R0,5</td>
<td>140-10</td>
<td>18-1-6</td>
<td>125-30-12-R10</td>
</tr>
<tr>
<td>52</td>
<td>40</td>
<td>50</td>
<td>7</td>
<td>52</td>
</tr>
<tr>
<td>30-TK</td>
<td>16-TK</td>
<td>12-TK</td>
<td>15-W20</td>
<td>40</td>
</tr>
<tr>
<td>Specification in mm, pitch circle (TK) if available</td>
</tr>
<tr>
<td>Note: the geometry of profile rollers is sometimes very complex, so that the research key description is partly product-specific.</td>
<td>Note: the geometry of profile rollers is sometimes very complex, so that the research key description is partly product-specific.</td>
<td>Note: the geometry of profile rollers is sometimes very complex, so that the research key description is partly product-specific.</td>
<td>Note: the geometry of profile rollers is sometimes very complex, so that the research key description is partly product-specific.</td>
<td>Note: the geometry of profile rollers is sometimes very complex, so that the research key description is partly product-specific.</td>
</tr>
</tbody>
</table>

Diamond selection

- C: Diamond coating
- CG: Combination of diamond and cubic boron nitride (CBN)
- G: Ceramic coating
- GK: Combination of ceramic and cubic boron nitride (CBN)
- AW: Aluminum oxide coating
- M: Tungsten carbide coating
- TK: No coating

Description of the main geometry of the tool

- Specific information on the application (outside diameter, radius, chamfer, angle, diamond-coated width, height, geometrical information, ...)
- Indication in mm, if available

Bore diameter

- 52
- 40
- 30-TK
- 16-TK
- 12-TK
- 15-W20
- 40

Overall width and mounting

- Specification in mm, pitch circle (TK) if available
- 30-TK
- 33-10
- 33-10
- TK
- TK
IMPORTANT FORMULAS FOR THE PRACTICE

CUTTING SPEED
For wheels, the peripheral speed v_s is dependent on the profile height, so that the cutting speed v_c depends on the workpiece speed v_w and the machining direction (synchronous or opposed grinding).

$$v_s = \pi \cdot d_s \cdot n_s \quad \leftrightarrow \quad n_s = \frac{v_s}{\pi \cdot d_s}$$

Workshop formula:

$$n_s = \frac{v_s \text{ (in m/s)} \cdot 1000 \cdot 60}{\pi \cdot d_s \text{ (in mm)}} \quad \text{(in U/min)}$$

$$v_s = \frac{\pi \cdot d_s \text{ (in mm)} \cdot n_s \text{ (in U/min)}}{1000 \cdot 60} \quad \text{(in m/s)}$$

$$v_c = v_s \pm v_w \quad \text{in (m/s)}$$

DRESSING SPEED
When dressing with a dressing disc, the peripheral speed v_d is only dependent on the speed n_d and the tool diameter d_d. In the case of profile rollers, different peripheral speeds at the tool result depending on the profile height.

$$v_d = \pi \cdot d_d \cdot n_d \quad \leftrightarrow \quad n_d = \frac{v_d}{\pi \cdot d_d}$$

Workshop formula:

$$n_d = \frac{v_d \text{ (in m/s)} \cdot 1000 \cdot 60}{\pi \cdot d_d \text{ (in mm)}} \quad \text{(in U/min)}$$

$$v_d = \frac{\pi \cdot d_d \text{ (in mm)} \cdot n_d \text{ (in U/min)}}{1000 \cdot 60} \quad \text{(in m/s)}$$

SPEED RATIO
When dressing profile grinding wheels, there are different speed ratios depending on the profile height. When dressing with a profile roller, these are considerably greater than when dressing with a form roller. Counter-rotating dressing generally always results in better surfaces on the workpiece.

$$q_d = \frac{v_d}{v_{sd}} = \frac{d_d \cdot n_d}{d_s \cdot n_{sd}} \quad \text{in (+) \quad \text{ SAME DIRECTION}}$$

Workpiece roughness

Overlap ratio U_d (dressing disc)

Radial infeed f_r (profile roller)

$$\Delta q_{d FR} = n_d \cdot \left(\frac{d_d}{d_{s min}} - \frac{d_d}{d_{s max}} \right)$$

$$\Delta q_{d PR} = n_d \cdot \left(\frac{d_{s max}}{d_{s min}} - \frac{d_{s min}}{d_{s max}} \right)$$
DRESSING COVERAGE RATIO

$U_d = \frac{a_{pd}}{f_{ad}} = \frac{a_{pd} \cdot n_{sd}}{v_{fad}}$

Workpiece roughness U_d

$U_d = \frac{a_{pd}}{f_{ad}} = \frac{a_{pd} \cdot n_{sd}}{v_{fad}}$

Guideline for steel processing

Grinding wheel peripheral speed v_r:
- 25...50 m/s

Grinding speed ratio q_s:
- Roughing (OD/ID/Pendulum grinding): 40...60
- OD/ID finishing: 60...90
- Fine finishing (OD/ID): 90...120
- Deep grinding (surface grinding): 1500...4200

Removal rate Q'_w:
- Roughing: 1...4 (ID-grinding 1...1,5)
- Finishing: 0,3...1,5
- Fine finishing: 0,1...0,3
- Firing: 3...10 Workpiece rotations (strokes)

Grinding wheel overlap U_o:
- Longitud. grinding: 3 (Roughing) 6 (Fine finishing)
- Infeed a_e: 0,01 mm 0,001 mm
- Tangential feed rate v_r: 1000 mm/min ... 500 mm/min (Standard values, depending on b_d, n_d)
- Radial feed rate v_r: 0,05 0,2 mm/min

Wear ratio G:
- 3...30
- 400...10000

Dressing cut a_{ad}:
- Disc/Stat. dres.: ca. 10 x 0,01...0,02...0,04 mm (pay attention to a_{ad})
- CBN: ca. 5-10 x 0,002...0,005 mm (pay attention to a_{ad})

Radial dressing feed f_{rd}:
- Profile roller: 0.1 ... 0.8 µm/rev.

Dressing speed ratio q_d:
- Counter direction: -0.3 ... -0.8 (better roughness)

Overlap ratio U_o:
- Roughing: 2...3
- Normal grinding: 3...4
- Finishing: 4...6
- Fine finishing: 6...8

DR. KAISER App:

GUIDE VALUES FOR STEEL PROCESSING

(Standard applications) Conventional CBN

<table>
<thead>
<tr>
<th>Grind. wheel peripheral speed v_r:</th>
<th>25...50 m/s</th>
<th>45...120 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grind. speed ratio q_s:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roughing (OD/ID/Pendulum grinding):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD/ID finishing:</td>
<td>40...60</td>
<td></td>
</tr>
<tr>
<td>Fine finishing (OD/ID):</td>
<td>60...90</td>
<td></td>
</tr>
<tr>
<td>Deep grinding (surface grinding):</td>
<td>90...120</td>
<td></td>
</tr>
<tr>
<td>Removal rate Q'_w:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roughing:</td>
<td>1...4</td>
<td></td>
</tr>
<tr>
<td>Finishing:</td>
<td>0,3...1,5</td>
<td></td>
</tr>
<tr>
<td>Fine finishing:</td>
<td>0,1...0,3</td>
<td></td>
</tr>
<tr>
<td>Firing:</td>
<td>3...10 Workpiece rotations (strokes)</td>
<td></td>
</tr>
<tr>
<td>Grind. wheel overlap U_o:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitud. grinding:</td>
<td>3 (Roughing)</td>
<td>6 (Fine finishing)</td>
</tr>
<tr>
<td>Infeed a_e:</td>
<td>0,01 mm 0,001 mm</td>
<td>0,05 0,005 mm</td>
</tr>
<tr>
<td>Tangential feed rate v_r:</td>
<td>1000 mm/min ... 500 mm/min (Standard values, depending on b_d, n_d)</td>
<td></td>
</tr>
<tr>
<td>Radial feed rate v_r:</td>
<td>0,05 0,2 mm/min</td>
<td>0,1...2 mm/min</td>
</tr>
<tr>
<td>Wear ratio G:</td>
<td>3...30</td>
<td>400...10000</td>
</tr>
<tr>
<td>Dressing cut a_{ad}:</td>
<td>Disc/Stat. dres.: ca. 10 x 0,01...0,02...0,04 mm (pay attention to a_{ad})</td>
<td>CBN: ca. 5-10 x 0,002...0,005 mm (pay attention to a_{ad})</td>
</tr>
<tr>
<td>Radial dressing feed f_{rd}:</td>
<td>Profile roller: 0.1 ... 0.8 µm/rev.</td>
<td></td>
</tr>
<tr>
<td>Dressing speed ratio q_d:</td>
<td>Counter direction: -0.3 ... -0.8 (better roughness)</td>
<td>Same direction: 0,3 ... 0,8 (easy cutting wheel structure)</td>
</tr>
<tr>
<td>Overlap ratio U_o:</td>
<td>Roughing: 2...3</td>
<td></td>
</tr>
<tr>
<td>Normal grinding:</td>
<td>3...4</td>
<td></td>
</tr>
<tr>
<td>Finishing:</td>
<td>4...6</td>
<td></td>
</tr>
<tr>
<td>Fine finishing:</td>
<td>6...8</td>
<td></td>
</tr>
</tbody>
</table>

Straight dresser

$U_d = a_{pd} \div f_{ad}$

$U_d = \frac{a_{pd} \cdot n_{sd}}{v_{fad}}$

$v_{fad} = n_{sd} \cdot \frac{a_{pd}}{U_d}$

$U_d = \frac{a_{pd}}{f_{ad}} = \frac{a_{pd} \cdot n_{sd}}{v_{fad}}$

$U_d = \frac{a_{pd} \cdot n_{sd}}{v_{fad}}$

$v_{fad} = n_{sd} \cdot \frac{a_{pd}}{U_d}$

$U_d = \frac{a_{pd}}{f_{ad}} = \frac{a_{pd} \cdot n_{sd}}{v_{fad}}$

$U_d = \frac{a_{pd}}{f_{ad}} = \frac{a_{pd} \cdot n_{sd}}{v_{fad}}$
EVERYTHING FROM A SINGLE SOURCE:

DRESSING DISCS
DRESSING ROLLERS
STATIONARY DRESSING TOOLS
CVD DIAMOND DRESSING TECHNOLOGY
DRESSING SYSTEMS FOR VITRIFIED CBN GRINDING WHEELS
DRESSING TOOLS FOR GEAR GRINDING
DRESSING SPINDLE SYSTEMS
CBN AND DIAMOND GRINDING WHEELS
PCD AND PCBN CUTTING TOOLS
PCD AND CVD DIAMOND WEAR
PROTECTION COMPONENTS
APPLICATION ENGINEERING
SEMINARS AND TRAINING

DR. KAISER DIAMANTWERKZEUGE GmbH & Co. KG
Am Wasserturm 33 G · 29223 Celle Germany · Tel. +49 5141 9386 0
info@drkaiser.de · www.drkaiser.de

OUR FIELDS OF ACTIVITY